
Am I your father?
Applying Computational Methods in Detecting Grammatical
Similarities in the Dialogues between Star Wars Characters

By Simon Zuberek
November 24th, 2020
CUNY Graduate Center

Introduction

∙ Final Project for Methods in Computational Linguistics I (Fall 2019)

∙ Inspired by the last episode of the Star Wars saga

∙ Python

∙ Little prior programming background

Introduction

∙ “Every son quotes his father, in words and deeds.” - Anonymous

∙ We know how the actions of Luke resonate with those of his father, but what about

his language?

Hypothesis

∙ What can Luke and Vader tell us about their family dynamic.
∙ If the two characters are indeed patrilineally related then we can hypothesize that

this connection may be reflected in their dialogue, i.e. that Luke’s and Vader’s
language may be similar.

∙ The project applies basic computational methods to examine whether Luke
Skywalker actually speaks like his father, Darth Vader

I am your father?

Method: Obtaining the Data

∙ Screenplays for the “Original Trilogy” (OT: Episodes IV - VI)

∙ Pre-processed .txt files:

∙ Only enumerated dialogue lines for every character in each film

∙ Saved saved under ep#.txt (where # stands for the episode number)

https://www.kaggle.com/xvivancos/star-wars-movie-scripts

Method: Preparing the “Raw” Data

"character" "dialogue"
"1" "THREEPIO" "Did you hear that? They've shut down the main reactor. We'll be
destroyed for sure. This is madness!"
"2" "THREEPIO" "We're doomed!"
"3" "THREEPIO" "There'll be no escape for the Princess this time."
"4" "THREEPIO" "What's that?"
"5" "THREEPIO" "I should have known better than to trust the logic of a half-sized
thermocapsulary dehousing assister..."
"6" "LUKE" "Hurry up! Come with me! What are you waiting for?! Get in gear!"
"7" "THREEPIO" "Artoo! Artoo-Detoo, where are you?"
"8" "THREEPIO" "At last! Where have you been?"
"9" "THREEPIO" "They're heading in this direction. What are we going to do? We'll be sent
to the spice mines of Kessel or smashed into who knows what!"
"10" "THREEPIO" "Wait a minute, where are you going?"

Method: Preparing the Data (Code)

Removing the line numbers
with open('ep4.txt', 'r', encoding = 'utf-8') as input, open('ep4_out.txt', 'w', encoding
= 'utf-8') as output:
 for line in input:
 line = re.sub(r'^"\d+"', '', line).casefold()
 output.write(line)

 path = 'ep4_out.txt'

Method: Preparing the Data (Output)

"character" "dialogue"
 "threepio" "did you hear that? they've shut down the main reactor. we'll be destroyed
for sure. this is madness!"
 "threepio" "we're doomed!"
 "threepio" "there'll be no escape for the princess this time."
 "threepio" "what's that?"
 "threepio" "i should have known better than to trust the logic of a half-sized
thermocapsulary dehousing assister..."
 "luke" "hurry up! come with me! what are you waiting for?! get in gear!"
 "threepio" "artoo! artoo-detoo, where are you?"
 "threepio" "at last! where have you been?"
 "threepio" "they're heading in this direction. what are we going to do? we'll be sent to
the spice mines of kessel or smashed into who knows what!"
 "threepio" "wait a minute, where are you going?"

Method: Isolating the Characters

∙ Only interested in Luke’s and Vader’s lines
∙ The script will work for other characters appearing in the data.
∙ Having isolated the lines uttered by either character we want to clean them:

∙ Remove the “Vader” / “Luke” strings
∙ The interpunction:

∙ Remove the quotation marks
∙ Remove the commas
∙ Leave the periods, question marks, and exclamation points.

Method: Isolating the Characters (Code)
with open(path, 'r') as source:
 lines = source.readlines()

 vader = re.compile(r'"vader".+')
 vader_lines = list()

 for line in lines:
 match = vader.search(line)
 if match:
 vader_lines.append(match.group())

 global vader_lines_str
 vader_lines_str = str()

 for line in vader_lines:
 vader_lines_str += line
 vader_lines_str = vader_lines_str.replace('"vader"', '')
 vader_lines_str = vader_lines_str.replace('"', '')
 vader_lines_str = vader_lines_str.replace(',', '')

print(f'Lord Vader says: \n {vader_lines_str}')

Method: Isolating the Characters (Output)

Lord Vader says:
 where are those transmissions you intercepted? if this is a consular ship... where is
the ambassador? commander tear this ship apart until you've found those plans and bring me
the ambassador. i want her alive! don't play games with me your highness. you weren't on
any mercy mission this time. you passed directly through a restricted system. several
transmissions were beamed to this ship by rebel spies. i want to know what happened to
the plans they sent you. you're a part of the rebel alliance... and a traitor. take her
away! i have traced the rebel spies to her. now she is my only link to find their secret
base! leave that to me. send a distress signal and then inform the senate that all aboard
were killed! she must have hidden the plans in the escape pod. send a detachment down to
retrieve them. see to it personally commander. there'll be no one to stop us this time.
the plans you refer to will soon be back in our hands. don't be too proud of this
technological terror you've constructed. the ability to destroy a planet is insignificant
next to the power of the force. i find your lack of faith disturbing. as you wish. and now
your highness we will discuss the location of your hidden rebel base. her resistance to
the mind probe is considerable. (etc.)

A boring conversation anyway.

Method: Processing the Dialogue Lines

Process things in order:

1. Split the continuous string into sentences
2. Split the sentences into word tokens
3. POS tag the words

Method: Processing the Dialogues (Code)

Splitting the string into sentences and word tokens

from nltk.tokenize import PunktSentenceTokenizer, word_tokenize

def word_sentence_tokenize(text):
 sentence_tokenizer = PunktSentenceTokenizer(text)
 sentence_tokenized = sentence_tokenizer.tokenize(text)
 word_tokenized = list()

 for tokenized_sentence in sentence_tokenized:
 word_tokenized.append(word_tokenize(tokenized_sentence))

 return word_tokenized

Method: Splitting into Sentences and Word Tokens (Output)

def process_vader():
 vader_tokenized = word_sentence_tokenize(vader)

 single_sentence_tokenized = vader_tokenized[27]
 print(f"Vader's single tokenized sentence: {single_sentence_tokenized}")

>>> Vader's single tokenized sentence: ['what', 'do', 'you', 'mean', '?']

Method: POS Tagging (Output)

pos_tagged_vader = list()

 for sentence in vader_tokenized:
 pos_tagged_vader.append(pos_tag(sentence))

 pos_tagged_sentence = pos_tagged_vader[27]
 print()
 print(f"Vader's single part-of-speech tagged sentence: {pos_tagged_sentence}")

>>> Vader's single part-of-speech tagged sentence: [('what', 'WP'), ('do', 'VBP'), ('you',
'PRP'), ('mean', 'VB'), ('?', '.')]

Method: The next steps?

∙ Everything is broken into sentences, tokenized, and POS-tagged.
∙ Count the parts of speech? Compare and contrast with Luke?
∙ None of this is very useful...

These are not the droids you are looking for.

Method: Syntactic Analysis

Grammar: Noun phrases (NPs), Verb
Phrases (VPs), Prepositional Phrases (PP)

∙ NP = (Det.) + n(ADJ) + N
∙ VP = NP + V + n(ADV) + NP and/or PP
∙ PP = Prep. + NP

Grammar in RegEx:

∙ 'NP: {<DT>?<JJ.?>*<NN>}'
∙ 'VP:

{<DT>?<JJ.?>*<NN><VB.?>((<RB.?
>)|(<DT>?<JJ.?>*<NN>)|(<IN><DT
>?<JJ.?>*<NN>))*}'

Method: Syntactic Analysis (Code)

np_chunk_grammar = 'NP: {<DT>?<JJ.?>*<NN>}'
 np_chunk_parser = RegexpParser(np_chunk_grammar)

 vp_chunk_grammar = 'VP:
{<DT>?<JJ.?>*<NN><VB.?>((<RB.?>)|(<DT>?<JJ.?>*<NN>)|(<IN><DT>?<JJ.?>*<NN>))*}'
 vp_chunk_parser = RegexpParser(vp_chunk_grammar)

 np_chunked_vader = list()
 vp_chunked_vader = list()

 for sentence in pos_tagged_vader:
 np_chunked_vader.append(np_chunk_parser.parse(sentence))
 vp_chunked_vader.append(vp_chunk_parser.parse(sentence))

Method: Vader’s NP List (Output)

[Tree('S', [('where', 'WRB'), ('are', 'VBP'), ('those', 'DT'), ('transmissions', 'NNS'),
('you', 'PRP'), ('intercepted', 'VBN'), ('?', '.')]), Tree('S', [('if', 'IN'), ('this',
'DT'), ('is', 'VBZ'), Tree('NP', [('a', 'DT'), ('consular', 'JJ'), ('ship', 'NN')]),
('...', ':'), ('where', 'WRB'), ('is', 'VBZ'), Tree('NP', [('the', 'DT'), ('ambassador',
'NN')]), ('?', '.')]), Tree('S', [Tree('NP', [('commander', 'NN')]), Tree('NP', [('tear',
'NN')]), ('this', 'DT'), ('ship', 'JJ'), ('apart', 'RB'), ('until', 'IN'), ('you', 'PRP'),
("'ve", 'VBP'), ('found', 'VBN'), ('those', 'DT'), ('plans', 'NNS'), ('and', 'CC'),
('bring', 'VB'), ('me', 'PRP'), Tree('NP', [('the', 'DT'), ('ambassador', 'NN')]), ('.',
'.')]), Tree('S', [Tree('NP', [('i', 'NN')]), ('want', 'VBP'), ('her', 'PRP$'), ('alive',
'JJ'), ('!', '.')]), Tree('S', [('do', 'VBP'), ("n't", 'RB'), ('play', 'VB'), ('games',
'NNS'), ('with', 'IN'), ('me', 'PRP'), ('your', 'PRP$'), Tree('NP', [('highness', 'NN')]),
('.', '.')]), Tree('S', [('you', 'PRP'), ('were', 'VBD'), ("n't", 'RB'), ('on', 'IN'),
Tree('NP', [('any', 'DT'), ('mercy', 'JJ'), ('mission', 'NN')]), Tree('NP', [('this',
'DT'), ('time', 'NN')]), ('.', '.')]), Tree('S', [('you', 'PRP'), ('passed', 'VBN'),
('directly', 'RB'), ('through', 'IN'), Tree('NP', [('a', 'DT'), ('restricted', 'JJ'),
('system', 'NN')]), ('.', '.')])] etc.

Your eyes can deceive you, don’t trust them.

Method: Making sense of the VPs and NPs

∙ Count most common VP and NP chunks for Vader and Luke respectively
∙ Counter functions that output top 10 of most common grammar chunks

Method: Top NPs and VPs Counters (Code)

Top NPs Counter

def np_chunk_counter(chunked_sentences):

 chunks = list()

 for chunked_sentence in chunked_sentences:
 for subtree in
chunked_sentence.subtrees(filter=lambda t:
t.label() == 'NP'):
 chunks.append(tuple(subtree))

 chunk_counter = Counter()

 for chunk in chunks:
 chunk_counter[chunk] += 1

 return chunk_counter.most_common(10)

Top VPs Counter
def vp_chunk_counter(chunked_sentences):

 chunks = list()

 for chunked_sentence in chunked_sentences:
 for subtree in
chunked_sentence.subtrees(filter=lambda t:
t.label() == 'VP'):
 chunks.append(tuple(subtree))

 chunk_counter = Counter()

 for chunk in chunks:
 chunk_counter[chunk] += 1

 return chunk_counter.most_common(10)

Method: Vader’s Top NPs and VPs (Output)

Vader’s Top NPs

top_np_chunks =
np_chunk_counter(np_chunked_vader)

>>> Vader's most-commonly used noun-phrases:
((('i', 'NN'),), 11)
((('the', 'DT'), ('force', 'NN')), 5)
((('the', 'DT'), ('ambassador', 'NN')), 2)
((('highness', 'NN'),), 2)
((('this', 'DT'), ('time', 'NN')), 2)
((('this', 'DT'), ('ship', 'NN')), 2)
((('the', 'DT'), ('rebellion', 'NN')), 2)
((('the', 'DT'), ('end', 'NN')), 2)
((('stay', 'NN'),), 2)
((('formation', 'NN'),), 2)

Vader’s Top VPs
top_vp_chunks = vp_chunk_counter(vp_chunked_vader)

>>> Vader's most-commonly used verb-phrases:
((('i', 'NN'), ('want', 'VBP')), 2)
((('the', 'DT'), ('force', 'NN'), ('is', 'VBZ')), 2)
((('all', 'DT'), ('aboard', 'NN'), ('were', 'VBD')), 1)
((('a', 'DT'), ('planet', 'NN'), ('is', 'VBZ')), 1)
((('probe', 'NN'), ('is', 'VBZ')), 1)
((('i', 'NN'), ('told', 'VBD')), 1)
((('i', 'NN'), ('want', 'VBP'), ('every', 'DT'), ('part',
'NN'), ('of', 'IN'), ('this', 'DT'), ('ship', 'NN')), 1)
((('i', 'NN'), ('have', 'VBP'), ("n't", 'RB')), 1)
((('i', 'NN'), ('felt', 'VBD')), 1)
((('obi-wan', 'NN'), ('is', 'VBZ'), ('here', 'RB')), 1)

Never tell me the odds.

Results and Discussion: Episode IV: “A New Hope”

Results and Discussion: Predictions about the Data

Ep. IV: A New Hope

∙ Difference doesn’t

surprise

∙ Viewers aren’t

suspecting that the

two characters are

related

Ep. V: The Empire Strikes

Back

∙ Similarities would be

helpful in heightening

the tension,

complicating the plot,

and adding to the film.

Ep. VI: Return of the Jedi

∙ The relationship had

been revealed.

∙ Luke is starting to

resemble his father.

∙ The final confrontation

between the father

and the son.

No!

Conclusions and Limitations

Conclusions

∙ No linguistic similarities between Luke and Vader
∙ Luke is becoming increasingly like his father in everything except the way in which

he speaks.

Limitations

∙ Limited data / small corpus doesn’t invite firm conclusions
∙ Luke tends to speak more than Vader, further skewing the data

Questions and Comments

Simon Zuberek

M.A. in Comp-Ling
simon@zuberek.net
GitHub Repo

mailto:simon@zuberek.net
https://github.com/zoobereq/CIRCL-Presentation-11242020.git

May the force be with you.

